BOP Art

The Art of Mounting Blast Overpressure (BOP) Transducers

W. Scott Walton Ballistic Technology Officer US Army Test Center Aberdeen Proving Ground, MD

Aberdeen Test Center

BOP Measurement Missions

A pressure measurement technician's nightmare! (0.03 psi vs. 20,0000 psi)

- Measure many different types of pressure:
 - Quasi-static pressure for structural effects
 - High level pressure for lethality
 - BTD pressure for survivability
 - Low level side-on pressure for training safety
 - Side-on, Face-on, Stagnation, etc.
- Armored Vehicle Testing
 - Crew Compartment (Human)
 - Ammunition Compartment (structural)
- Weapon Testing (Human)
 - Crew Area
 - Instructor/Observer Areas (140 dB)
- Combat Ship Testing
 - Magazine Compartments (Structural)
 - Crew Compartments (Human)
- Aircraft Testing for Passenger and Cargo Compartments (Structural & Human)
- Ammunition/Warhead Testing
 - Stun Grenade (Hostage/Terrorist)
 - Bunker Defeat (Lethality & Structural)
 - Wall Breaching (Lethality, Structural, Human)

Measurement of BOP in Crew Area of Large Caliber Weapons

Combat & Structural BOP Missions

- Vehicle Attack
- •Ammunition Magazine Explosion
- •Bunker Attack
- •Wall Breaching in Urban Combat

Quasi-Static Pressure Measurement

- •Microsecond Shock Waves Too Fast for Millisecond Structural Response
- Need a mount to keep out shock waves so a low pressure quasistatic transducer can be used

Know the Enemy (and do the math!)

Reflected pressure is at least 2X higher than side-on pressure

Reflections

Pressure Transducers

Piezoresistive, piezoelectric, PVDF foil, Carbon 'Flatpack'

Need to measure very high pressures (10,000 psi) to support hydrocode modeling

Transducer Mounts

For Side-On Pressure, Peak Reflected Pressure, and Quasi-Static Pressure

Mount design techniques contributed by Navy, ARL, ERDC, Sweden, UK, etc. Shock tube technique most robust in high fragmentation environment.

Alignment Issues

Rewards and Penalties for Various Mount Geometries

Blunt Cylinder Overshoot & Undershoot (Good Off-Axis, Good MILS-STD 1474, Bad for High Pressure CFD Modeling)

Pencil & Skimmer Plate do not overshoot (But poor off-axis)

Skimmer plate is omni-directional in 1 plane (But very bad out of plane)

Small Transducers and Human Size Mounting

Blast Overpressure Measurement

Measurement Considerations:

- •Protect PE & PR Transducers from Heat, Light, Acceleration, and Fragments
- •Smooth Aerodynamic Shape for Peak Pressure
- •Protect Quasi-Static Gages from Peak Shock Waves
- •Mount transducers in 'Blast Test Device' (BTD) for evaluation using WRAIR "INJURY" Code
- •Limited Success with PVDF, Carbon, & Ytterbium sensors for close-in blast measurement

Arena Test to Verify Transducer Performance (or 'Range Calibration Shot' to Evaluate Reflection Effects)

Wall Breeching Test Setup

Fragment Hazards, Fragment Collection, Behind Armor Debris Evaluation, and other Objectives Conflict with BOP Objectives

How seriously are the BOP measurements compromised??

Conclusions

- There is always some art hidden deep within the science!
- Many Compromises (Aerodynamic Cleanliness, Directionality, Fragment Protection, Shock Isolation, etc.)
- Use Blind Transducers, Check Channels, Data Fusion, and Arena Testing to Verify Compromises